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Abstract
An integral equation theory and Monte Carlo simulations are applied to study a model macroion
solution confined between two parallel plates immersed in a 1:1 electrolyte and the macroions’
counterions. We analyze the cases in which plates are: (a) uncharged; (b) when they are
like-charged to the macroions; (c) when they are oppositely charged to the macroions. For all
cases a long range oscillatory behavior of the induced charge density between the plates is
found (implying an overcompensation/undercompensation of the plates’ charge density) and a
correlation between the confined and outside fluids. The behavior of the force is discussed in
terms of the macroion and ion structure inside and outside the plates. A good agreement is
found between theoretical and simulation results.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Experiments have shown interesting phenomena associated
with charged macroions in confinement: aqueous solutions
of highly charged macroions confined between two like-
charged parallel plates (with the macroions and the plates being
similarly charged) induce an attraction between them [1]. Also,
macroions exhibit attraction among themselves [2, 3] as well
as transversal [1] and lateral [4] ordering. In a different kind
of experiment, but in a sense similar to the previous ones, a
mixture of DNA polyelectrolytes with cationic liposomes has
been considered, giving rise to a multilamellar self-assembling
of positively charged liposome membranes and intercalated
negative DNA polyelectrolytes [5].

The interaction between two symmetrically charged
parallel plates immersed in an electrolyte solution has
been considered theoretically since the pioneering works of
Derjaguin, Landau, Verwey and Overbeek (DLVO) [6, 7].
In their work, they solved the Poisson–Boltzmann equation
for the electrical double layer (EDL) produced by an
electrolyte confined between two parallel plates. The
DLVO theory predicts an exponentially decaying repulsive
interaction between the charged surfaces. Since Poisson–
Boltzmann theory neglects ionic correlations, DLVO theory

can be considered valid only for a restricted regime of
conditions, i.e. low concentrated monovalent solutions and
low electrostatic surface potentials. Later efforts to incorporate
ionic short range correlations into the EDL have been made by
means of integral equation theories [8–10], density functional
theories [11–13] and computer simulations [9, 14, 15]. On
the other hand, studies on the interaction force between
two plate-like charged colloids have shown that multivalent
electrolytes, at moderate and high concentrations, produce
a non-monotonic decay which can turn attractive at certain
separation distances [16–18]. Such non-monotonic and
attractive behavior for the interaction between two like-charged
cylindrical [19] and spherical [20] colloids has also been found.

Beyond the colloid–colloid interaction mediated by an
electrolyte solution, interesting surface effects attributed to the
proper consideration of ionic correlations have been predicted
theoretically and corroborated by computer simulations, i.e.
surface charge reversal [21–23], the reverse of macroion
mobility [24–26], the non-monotonic relationship between the
surface potential and surface charge density [23, 27], just to
mention a few. Surface charge reversal refers to the surface
charge overcompensation by an excess of oppositely charged
particles adsorbed from the solution. This phenomenon
has been observed for polyvalent and even for monovalent
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ions [23, 28]. However, it is particularly magnified by
polyelectrolytes and macroions [29–33], in which case this
phenomenon is the basis for macroions self-assembling and
polyelectrolyte complexation on surfaces [34, 35]. Macroion
adsorption on colloid surfaces also provides innovative colloid
stabilization mechanisms through the formation of halos [36].
Hence, the understanding of the EDL produced by complex
charged fluids is recognized to be important in a broad
variety of disciplines, from biology to physics. This has
motivated theoretical and computer simulation efforts for
describing macroion adsorption on charged surfaces (i.e. the
EDL phenomenon produced by complex charged fluids, such
as macroions, colloids and polyelectrolytes [29–33]). In
this regard, in the past we applied an integral equation
theory for inhomogeneous fluids to the EDL produced by
a macroion solution next to a charged interface, where
novel phenomena attributed to the consideration of size
and electrostatic correlations have been described [30, 31].
Of particular interest are the results of overcharging [30]
which implies the adsorption of ions onto a like-charged
surface, and hence being different to charge reversal.
Overcharging results from considering correlations among
size-unsymmetrical charged species and has been observed in
recent computer simulations [37]. It can also be predicted by
Poisson–Boltzmann theories where macroion–macroion size
correlations are neglected [38, 39].

By means of computer simulations, we recently studied
the interaction between two like-charged plates in solution with
two intercalated rod-like cylindrical macroions [40, 41]. In
that work, we have found a plate–plate attractive interaction
associated with entropic and electrostatic correlations induced
by the presence of the charged rods. In the same way, we have
shown that the presence of the plates dramatically reduces the
rod–rod repulsion, turning it attractive at certain conditions,
these findings being consistent with the experimental results
of Rädler et al [5]. On the other hand, previous studies
on the interaction between two charged parallel plates, with
macroions at finite concentration in between, have been
carried out by modeling macroion–macroion and surface–
macroion through screened Coulomb potentials, predicting
the macroions’ ordering and the qualitative behavior for the
plate–plate interaction [42–45]. However, these models do
not consider correlations associated with the presence of
counterions and electrolyte. Here we will show that the
proper consideration of size and electrostatic correlations (due
to macroions and small ions) reveal interesting phenomena
in the behavior of the plate–plate effective interaction,
concentration profiles and induced charge densities, and
discuss the transversal and lateral ordering previously reported
experimentally [1–4].

In this work we consider two like-charged (or uncharged)
parallel plates immersed in a solution containing macroions,
their counterions and an electrolyte. Hence, the electrostatic
and size correlations originated by the presence of charge
on the plates and the three charged species of the fluid are
explicitly considered. The main purpose of this work is to
study the effective interaction between the two like-charged (or
uncharged) plates, the structure of the confined fluid and the

adsorbed charge between the plates. Our studies are carried
out by means of an integral equation theory and Monte Carlo
computer simulations.

This paper is organized as follows: in section 2 we
describe the integral equation method and the model for a
macroion solution confined by two parallel charged plates
as well as the simulation method. In the same section,
we derive the hypernetted chain/mean spherical (HNC/MS)
integral equations and the equations to compute the plate–plate
effective interactions. In section 3 results are presented and
discussed and, finally, in section 4 some conclusions are given.

2. Theory

2.1. Integral equations for inhomogeneous fluids

The method that we use to derive integral equations for
inhomogeneous fluids makes use of a simple fact: an external
field can be considered as a particle in the fluid, i.e. as one more
species infinitely dilute. This statement is valid in general:
however, it is particularly useful in the statistical mechanics
theory for inhomogeneous fluids [46].

The multi-component Ornstein–Zernike equation for a
fluid made up of n + 1 species is

hi j(r21) = ci j(r21) +
n+1∑

m=1

ρm

∫
him(r23)cmj(r13) dv3, (1)

where ρm is the number density of species m, hi j (r21) ≡
gi j(r21) − 1 and ci j(r21) are the total and direct correlation
functions for two particles at r2 and r1 of species i and j ,
respectively, with gi j(r21) the pair distribution and r21 =
r2−r1. Among the most well-known closures between hi j(r21)

and ci j(r21) are [47]

ci j(r21) = −βui j(r21) + hi j (r21) − ln gi j(r21), (2)

ci j(r21) = −βui j(r21) for r21 ≡ |r21| � ai j . (3)

Equations (2) and (3) are known as the hypernetted
chain (HNC) and the mean spherical (MS) approximations,
respectively; ui j(r21) is the direct interaction potential between
two particles of species i and j , ai j is their closest approach
distance and β ≡ 1/kBT . Some more possibilities for solving
equation (1) are originated by considering a closure for ci j(r21)

in the first term of equation (1) and a different one for cmj (r13)

in the second term of equation (1), giving rise to hybrid
closures.

To derive integral equations for inhomogeneous fluids, we
let an external field be one of the fluid species, say the (n + 1)

species (hereinafter referred to as the γ species), which is
required to be infinitely dilute, i.e. ργ → 0. Therefore, the
total correlation function between the γ -species particle and a
j -species particle is given by

hγ j (r21) = cγ j (r21) +
n∑

m=1

ρm

∫
hγ m(r23)cmj (r13) dv3

with j = 1, . . . , n. (4)

The total correlation functions for the remaining species satisfy
a n-component Ornstein–Zernike equation as equation (1)
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(with no γ species) from which cmj (r13) is obtained. In this
scheme, the pair correlation functions, gγ j(r21), are just the
inhomogeneous one-particle distribution functions, g j(r1), for
particles of species j under the influence of an external field.
Thus, hγ j (r21) and cγ j (r21) can be replaced by h j(r1) ≡
g j(r1)−1 and c j (r1), respectively. Hence, the inhomogeneous
local concentration for the j species is given by

ρ j (r1) = ρ j g j(r1). (5)

By using the HNC closure (equation (2)) for cγ j (r21) in
equation (4), we get

g j(r1) = exp

{
−βu j(r1) +

n∑

m=1

ρm

∫
hm(r3)cmj (r13) dv3

}
,

(6)
where the subindex γ has been omitted for consistency with
equation (5). In our approach, cmj (r13) in the integral of
equation (6) is given by the direct correlation function for a
n-component homogeneous fluid; that is, cmj (r13) is obtained
from equation (1) using one of the closures provided by
equations (2) and (3). For the present derivation we will
use cmj (r13) obtained with the MS closure (equation (3)).
Therefore, equation (6) becomes the hypernetted chain/mean
spherical (HNC/MS) integral equations for an inhomogeneous
fluid. This equation has shown to be particularly successful in
the case of inhomogeneous charged fluids, providing a good
agreement with molecular simulation data [23, 48].

2.2. Models

We considered two symmetric planar hard walls of thickness
d , with a charge density σ on each surface, and separated by
a distance τ between their inner surfaces (see figure 1). The
fluid phase is made up in the following way: a two-component
electrolyte plus a macroion species and their counterions. For
simplicity the macroions’ counterions are of the same species
as the electrolyte. The three species are considered to be
hard spheres of diameter ai with a centered point charge
qi = zi e (zi being the ionic valence, e the proton’s charge
and i = +,−, M standing for cations, anions and macroions,
respectively). The solvent is considered as a uniform medium
of dielectric constant ε. For simplicity, the plate’s dielectric
constant is equal to that of the solvent. In addition we set

a ≡ a+ = a− � aM. (7)

Two ions of species m and j , with relative position r , interact
via the following potential:

umj (r) =
⎧
⎨

⎩

∞ for r < amj ,

zmz j e2

εr
for r � amj ,

(8)

with m, j = +,−, M and amj ≡ (am + a j)/2.
The charge on each plate is compensated by an induced

charge in the fluid, σ ′:

σ ′ ≡ σ in + σ out = −σT , (9)

Figure 1. Schematic representation for a model macroion solution
confined by a slit pore.

with σT = 2σ and σ in and σ out being the induced charge
between and outside the plates, respectively, which are given
by

σ in =
∫ t

0
ρel(x) dx (10)

and

σ out =
∫ ∞

t+d
ρel(x) dx, (11)

where

ρel(x) ≡ e
3∑

m=1

zmρm(x) (12)

is the local charge density profile. By symmetry, similar
expressions can be written for the left-hand side plate. Also
we have used the fact that (g j(r1)) depends only on the
perpendicular distance to the plates, x , i.e. g j(r1) = g j(x),
and that the local concentration profile is ρm(x) = ρm gm(x).
It should be pointed out that, in general, −σ in �= −σ out �=
σ , i.e. there is a violation of the local electroneutrality
condition [49–51].

According to the integral equation method outlined in
section 2.1, the two parallel plates are considered as the γ

species (see figure 1). The interaction potential between the
plates and a j -species particle depends only on the particle
position, x , referred to a Cartesian coordinate system with its
origin located in the middle of the plates. Thus, we write
u j(r1) = u j (x), which is split as u j (x) = uel

j (x) + u∗
j(x),

uel
j (x) being the direct electrostatic potential and u∗

j(x) the
hard–core interaction. The former can be found from Gauss’s
law, i.e.

−βuel
j (x) = 4π

ε
z j eβσ(2x+2t+d+|x−t−d|+|x−t|). (13)

The hard–core interaction is given by

u∗
j (x) =

{
∞ for x ∈ [t − a j/2, t + d + a j/2]
0 otherwise,

(14)

for j = +,−, M.
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In the integral of equation (6) we use the MS expression
of cmj (r13) for a primitive model bulk electrolyte, i.e.

cmj (r13) =
⎧
⎨

⎩
−βuel

mj (r13) = −β
zm z j e2

εr
for r13 � amj ,

csr
mj (r13) + chs

mj (r13) for r13 < amj ,
(15)

where r13 ≡ |r13| is the relative distance between two ions
of species m and j . The particles short range correlations
are considered through the bulk direct correlation functions
csr

mj (r13) and chs
mj (r13). The explicit form of these functions

is given in appendix A. Because of the system symmetry,
it is convenient to use cylindrical coordinates in the integral
of equation (6), and we can analytically integrate the φ and
r coordinates (see figure 1), i.e. we consider a cylindrical
coordinate system where r 2

13 = x2 + r 2 + y2 − 2xy and
dv3 = dφ r dr dy. After a lengthy algebra, from equation (6)
we get [30, 31]

g j(x) = exp

{
−βuel

j (x) − 2π A j(x)

+ 2π

3∑

m=1

ρm

∫

D
hm(y)Gmj (x, y) dy

+ 2πz j
e2β

ε

3∑

m=1

zmρm

∫

D
hm(y)[x + y + |x − y|] dy

}

(16)

where we have defined

Gmj (x, y) = Lmj (x, y) + Kmj (x, y), (17)

Lmj (x, y) =
∫ ∞

|x−y|
csr

mj (r13)r13 dr13 = e2β

ε
Dmj (x, y), (18)

Kmj (x, y) =
∫ ∞

|x−y|
chs

mj (r13) r13 dr13, (19)

and

A j(x) =
3∑

m=1

ρ j

∫ t+d+am /2

t−am/2
Gmj (x, y) dy

+ z j z3ρ3
βe2

ε

∫ t+d+a3/2

t+d+a/2
[x + y + |x − y|] dy

+ z j z3ρ3
βe2

ε

∫ t−a/2

t−a3/2
[x + y + |x − y|] dy. (20)

The expressions for the kernels, Kmj (r, y) and Dmj (x, y),
are given in appendix B. Notice that in the integrals of
equations (16) and (20), the fluid between the plates is
correlated with the outside fluid.

2.3. The plates’ effective interaction force

The derivation of the expression for the effective interaction
force per unit area (P) between two charged plates immersed
in a restricted primitive model electrolyte is given in detail
elsewhere [16–18]. Hence, by following a similar procedure
we obtain an identical expression when the plates are immersed
in a three-species fluid, which can be written as

P = PE + PC. (21)

where PE is the electrostatic component given by

PE = −4πσ

ε
(σ out − σ in) (22)

σ in and σ out being the induced charge densities inside and
outside the plates, respectively, given by equations (10)
and (11). The contact component, PC, is written as

PC = kBT [ρin
0 − ρout

0 ] (23)

where ρin
0 and ρout

0 are the fluid total concentration at the inside
and outside surfaces, respectively, which are expressed in terms
of the contact value of the reduced concentration profiles as

ρin
0 =

3∑

i=1

ρi gi(t − ai/2), (24)

and

ρout
0 =

3∑

i=1

ρi gi(t + d + ai/2). (25)

The pressure in equation (21) is clearly the effective plate–plate
interaction. Hence, for example, P > 0 implies an effective
plate–plate repulsion.

2.4. Simulations

We employ Monte Carlo (MC) simulations for studying the
system defined in section 2.2 and shown in figure 1. However,
in this case the charge on the plates’ surfaces is discretely
assigned to points all having the unit of charge e. These
charged points form a square grid on each plate surface, which
are frequently and randomly moved in the x and y directions
to mimic homogeneously charged surfaces. This is done for
consistency with the integral equation theory calculations. The
plates are inside a prism of sides L y = Lz = 175 Å and
Lx = 350 Å, which are much larger than the Debye–Hückel
screening length for all studied cases. Additionally, Lz is
larger than five times τ . These conditions are important to
avoid box size effects. The origin of coordinates is set at the
prism center. The 1–1 electrolyte is modeled by a restricted
primitive model, i.e. by hard spheres of diameter a with a
centered point charge, as well as the macroions which have
a valence of zM and a diameter of 5a. For all cases, an
electrolyte concentration of 0.1 M is set. These particles are
initially randomly placed avoiding overlaps. Similar system
set-ups were employed elsewhere to study forces between fixed
macroparticles [19, 40].

In order to directly compare the MC simulations with
the theoretical predictions, the excluded-volume interactions
are modeled by hard potentials. That is, overlaps are always
rejected and non-overlapping configurations are given an
overall excluded-volume contribution of zero. On the other
hand, the electrostatic contribution between any pair m j , where
m and j are either grid charged sites of the plates and/or ions,
is given by

Uel(r) = kBT 
B
zm z j

rmj
, (26)
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Figure 2. Snapshot of an equilibrated configuration for
ρM = 0.005 M, zM = −5, τ = 5.1a and σ = 0.033 C m−2. Black
and light (green online) particles correspond to positive and negative
charges, respectively.

where rmj is the distance between sites m and j , and zm

and z j are the valences of sites m and j , respectively. The

electrostatic strength is given by 
B = e2

εkBT = 7.14 Å, the
Bjerrum length. Electrostatic interactions were treated using
the Ewald summation formalism. The convergence factor
was fixed to 5.6/L y . There were set five reciprocal lattice
vectors for y and z directions and six for x . In addition to the
conventional MC trial moves, other ones having a maximum
displacement of L y/2 are done. This is necessary to access all
of the configuration space volume, i.e. to allow ion interchange
between the confined and unconfined regions. Both standard
and large displacement trials are randomly called with equal
probability. For the standard trials an acceptance probability
of 0.4 was set, which corresponds to over 30 Å of cation
and anion maximum displacements and a macroion maximum
displacement close to 5 Å. The large displacement trials are
accepted with probabilities close to 0.33 for cations and anions,
and close to 5×10−4 for macroions. This is enough to produce
a good sampling for 109 trials. Thus, there was no need to
implement cluster moves [52], which will be surely necessary
for macroions having larger surface charge density, larger size
or for a lower temperature. A snapshot of an equilibrated
configuration for ρM = 0.005 M, zM = −5, τ = 5.1a and
σ = 0.033 C m−2 is shown in figure 2.

The effective electrostatic force between plates is obtained
by simply averaging all site contributions, i.e. by computing

Fel =
〈 ∑

m

∑

j

−∇Uel(rmj )

〉
, (27)

where m runs over the sites of the reference plate and j
runs over all other sites. The contact force contribution is
obtained by integrating the ion contact density, i.e. by means
of equations (23)–(25). In this case we approach the fluid total
concentration at each side of the plates by extrapolating the
concentration of each species close to the surfaces. Finally,
it should be mentioned that these two contributions of the net
force are interdependent.

3. Results and discussion

We have applied HNC/MSA theory and Monte Carlo
simulations to study the effective interaction force between two

Figure 3. Total force per unit area between the two plates (P) as a
function of their separation distance, τ . The plates are uncharged
(σ = 0) and they are immersed in a solution containing macroions,
their counterions and a 0.1 M monovalent electrolyte. (a) The dotted
line corresponds to the HNC/MSA prediction for macroions at
ρM = 0.005 M and zM = −5 and (b) the dashed line corresponds to
ρM = 0.005 M and zM = −15. (c) The solid line and the black
circles are, respectively, the HNC/MSA and MC simulation results
for macroions at ρM = 0.05 M and zM = −5. (d) The solid light
curve (green online) is the result for uncharged macroparticles
(zM = 0) at ρM = 0.05 M. The inset shows a close up for τ � 6a.

like-charged (or uncharged) parallel plates, immersed in a fluid
containing macroions, their counterions and an electrolyte. We
also analyze the charge distribution inside and outside the
plates through the reduced concentration profiles (RCP) and
induced charge densities, σ in and σ out. For simplicity, we have
considered the electrolyte to be size-symmetric (with an ionic
diameter of a+ = a− = a = 4.25 Å), monovalent, and
at a 0.1 M concentration. In all cases considered here, the
macroions’ diameter is aM = 5a = 21.25 Å, the wall thickness
is d = a and the medium dielectric constant is ε = 78.5. We
have considered several cases of macroion concentration, ρM,
and valence, zM, as well as the plates’ surface charge density,
σ . In all cases zM � 0. Our results are organized according to
the plate’s surface charge density in the following order: first
we present the results for uncharged plates, second for positive
plates and, finally, for negative plates.

3.1. Uncharged plates

Figure 3 shows the HNC/MSA results for the plate–plate
total interaction force per unit area, P , as a function of their
separation distance (τ ) for uncharged plates (σ = 0) and
for three different macroion conditions: (a) ρM = 0.005 M
and zM = −5, (b) ρM = 0.005 M and zM = −15, and
(c) ρM = 0.05 M and zM = −5; case (d) is for uncharged
macroparticles (zM = 0, aM = 5a) at ρM = 0.05 M. We
performed MC simulations only for case (c) and the results
are included in the same plot, showing a good agreement with
the corresponding results from HNC/MSA. In all cases, the
interaction force between the uncharged plates is repulsive
within the interval 5a < τ � 7a, oscillates between attraction
and repulsion for τ � 7a, and is attractive for τ < 5a. This

5
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repulsive interaction reaches its maximum as τ → (5a)+, i.e.
when there is just enough room to fit a macroion layer between
the plates at τ ≈ aM. The maximum of the interaction force
is Pmax equal to (a) 0.007 MPa, (b) 0.13 MPa, (c) 2.46 MPa
and (d) 1.1 MPa, respectively, i.e. the repulsive interaction
at τ → (aM)+ increases more importantly by increasing
macroion concentration than by increasing their charge. This
fact is better seen for uncharged macroparticles (d) which
produce a value of Pmax of the same order of magnitude as
the charged ones at the same concentration (c), whereas those
with a higher value of |zM| and lower concentration (b) are
below by one order of magnitude. Actually, for ρM = 0, P is
negligible for all τ (not shown). For τ > aM, P decreases
as τ increases, reaching a minimum for certain plate–plate
separation distances. The minimum is at τ ≈ 9a for case (c)
and at τ ≈ 8.5a for case (d). Above this minimum, the
force displays long range damped oscillations. For τ < aM,
i.e. when macroions cannot penetrate between the plates, the
interaction force abruptly turns negative and remains nearly
constant as τ decreases up to 2a. It should be mentioned
that for this interval of τ the plates would collapse. However,
the energetic barrier to reach this configuration is very high.
This negative value of P is due to the pressure exerted by the
outside macroions, which cannot be counterbalanced by the
inside fluid since it does not contain macroions.

It should be noticed that both HNC/MSA and MC
simulations show a discontinuity of P at τ = 5a = aM,
occurring at crossover from P > 0 for τ → (5a)+ to
P < 0 for τ → (5a)−. This is a signature of the transition
from having macroions between the plates for τ � aM to the
absence of them for τ < aM. Apparently, the discontinuity
of P is exclusive to this geometry since for two spherical or
cylindrical colloidal particles there occurs only a discontinuity
of the derivative of P [20, 53], i.e. limτ→(aM)− P ′ �=
limτ→(aM)+ P ′. These behaviors are related to the following
facts: in planar geometry no particles are allowed to enter
in between the pates, and abruptly a layer of them enters for
surface–surface separation distances larger than the particles’
size. In bispherical geometry, as the two spheres separate, they
gradually leave space to finally allow a single particle to enter
in between, and then the rest. The two-rod geometry shows
an intermediate behavior between the planar and bispherical
geometry, i.e. as the two rods separate a line of ions is allowed
to be in between them [19].

Now we explain the behavior of P(τ ) in terms of
the reduced concentration profiles (see equations (21)–(25)).
Figure 4 shows the HNC/MSA and MC simulation results
for the RCP for macroions (gM(x)), anions (g−(x)) and
cations (g+(x)), and for three different plate–plate separation
distances, i.e. τ = 12a, 9a and 6a. The HNC/MSA theory
and MC simulations RCP show a good agreement. It is
observed that the RCP at the outside of the plates remains
nearly unchanged for the different values of τ , i.e. the three
species are adsorbed on the surface (the RCP values at contact
are greater than one, which is the bulk) and the RCP display
damped oscillations as the distance to the outside surface
increases, which are indicative of a transversal ordering of
macroions near the wall. It should be pointed out that the

Figure 4. Reduced concentration profiles (RCP) from HNC/MSA for
macroions (gM(x), solid line), anions (g−(x), dashed line) and
cations (g+(x), dotted line) for three different plate–plate separation
distances, i.e. τ = 12a, 9a and 6a. The black circles, white circles
and white diamonds are, respectively, RCP from the MC simulations
for macroions, anions and cations. The plates are uncharged (σ = 0)
and are immersed in a solution containing macroions (ρM = 0.05 M,
zM = −5), their counterions and a 0.1 M monovalent electrolyte.
The intervals where lines and symbols are interrupted correspond to
the presence of the plate.

adsorption of particles towards the uncharged plates’ surfaces
is driven by the need of the system for releasing space, i.e.
for increasing entropy [30]. Hence, the damped oscillations of
the macroions’ RCP reflect in a lesser degree the same need
of the system to increase entropy. The maxima and minima
remain located at the same distance to the outer surface. Even
the contact value of the macroions’ RCP at the outside surface,
gM(τ/2+d+aM/2), remains constant as a function of τ , except
for τ → (aM)+, where it slightly decreases (not shown). This
is due to the macroion–macroion correlation across the plates.
On the other hand, the RCP at the interplate region strongly
change with τ . In particular, the behavior of the confined
macroions is different from that for the outside macroions at
plate–plate separation distances of a few macroions’ diameters.
Notice that the inside macroion contact value is nearly equal
to that of the outside macroions for τ = 12a, is lower for
τ = 9a and higher for τ = 6a. The inside macroions’
local concentration increases as τ → (aM)+, which implies
an effective decrease of their mutual repulsion, induced by the
presence of the plates: this decrease in the effective macroion–
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macroion repulsion is a consequence of the energy–entropy
balance in the system, i.e. while the macroion–macroion
electrostatic and hard-sphere forces are always repulsive, the
many-body effective force has an attractive contribution due to
the need of the system for optimizing available space. The
interrelation of these attractive and repulsive forces can be
seen in equation (16), which is a many-body expression of
the Leibniz energy balance approach, equivalent to Newton’s
force balance approach. Although not shown, MC simulations
display a higher lateral ordering of the confined macroions
than those adsorbed at the outside surfaces. For τ < aM the
macroions leave completely the inside region of the plates,
which implies an attractive plate–plate interaction force. It
should be mentioned that the RCP are just plotted for positive
values of x , since they are symmetrical around x = 0.

For τ = 12a, a nearly symmetric behavior of the inside
and outside RCP can be seen as a function of the distance
to the plate surface, which is slightly broken by the higher
contact value of the inside macroions’ RCP with respect to the
outside contact value. This gives rise to a small plate–plate
repulsive effective interaction force (see the inset of figure 3).
As τ decreases slightly below τ = 2aM = 10a, the macroions
adsorbed on the two inner sides of the plates strongly interact,
hence promoting the release of macroions from the inside. This
release of macroions increases the accessible volume inside the
pore and thus enlarges the macroions’ concentration at the pore
center (see figure 4 for τ = 9a). The combination of macroion
release and the increase of their concentrations at the pore
center give rise to a desorption from the pore surface, which
in turn produces an attractive plate–plate effective interaction
force. Finally, for τ → a+

M, i.e. when there is space to
nearly accommodate macroions in a single layer, there is an
increase of macroion concentration at the plates’ middle plane
and at their surfaces (see figure 4 for τ = 6a). This macroion
layer enhances the plate–plate repulsive interaction force as
τ → a+

M.
Behind the adsorption of macroions on the plates’ surfaces

is the need of the system to increase the available volume,
i.e. the increase of entropy. Hence, the uneven adsorption at
both sides of the plates produces an attractive force and, on the
other hand, the charge on the macroions produces a repulsive
interaction. The balance of these two forces, one of entropic
origin and the other of electrostatic energy origin, leads to
regions of plate–plate mechanical equilibrium (see figure 3).
This entropy energy balance between two uncharged plate-
like nanoparticles and the macroions is an explanation for the
colloidal stabilization by nanoparticle halos reported by Tohver
et al [36].

3.2. Positively charged plates

We now discuss the results when the plates and macroions are
oppositely charged.

Figure 5 shows the HNC/MSA and MC simulation results
for the plate–plate total interaction force per unit area, P ,
and its electrostatic (PE) and contact (PC) components, as
a function of their separation distance (τ ). For reference
we included the plate–plate interaction force in the absence

Figure 5. Total force per unit area between the two plates (P) and its
contact (PC) and electrostatic (PE) components, as a function of their
separation distance, τ . The black solid, light dashed (green online),
and black dashed lines are, respectively, the HNC/MSA results for P,
PC and PE, whereas the black circles, light open diamonds (green
online) and white circles correspond to the MC simulation results.
The plates are positively charged (σ = 0.033 C m−2) and are
immersed in a solution containing macroions (ρM = 0.05 M and
zM = −5), their counterions and a 0.1 M monovalent electrolyte.
The solid light curve (blue online) is the total interaction force when
there are no macroions but only a monovalent 0.1 M electrolyte for
the same plate surface charge density. The inset shows a close up for
τ � 10a.

of macroions (ρM = 0) at the same values of the surface
charge density and electrolyte concentration. The plates are
positively charged (σ = 0.033 C m−2) and are immersed in a
macroion solution at ρM = 0.05 M and with zM = −5 plus
a 0.1 M electrolyte. We wish to point out the similarities and
differences between P for this case and for σ = 0: there is an
induced repulsive interaction maximum at τ → (aM)+, which
is induced by the presence of macroions. However, in this
case it is almost five times higher than for the uncharged case
since the number of macroions between the plates increases
due to the charge on the plates. In both cases, for τ >

aM, P decreases as τ increases and reaches a minimum at
about τ ≈ 6a. Above this minimum, the force displays
damped oscillations. The location of the minimum occurs at
a smaller value of τ than for the uncharged plates. In the
same way as for the uncharged plates, at τ = aM the force
is discontinuous and turns negative for τ � aM. However,
in this case it displays a monotonically increasing behavior
as τ decreases and eventually becomes positive at plate–plate
separation distances of a few ionic diameters. This negative
value of P at τ � aM is due to the unbalanced pressure
exerted by the outside macroions, and at small values of τ

it is counterbalanced by the unscreened electrostatic repulsive
force between the plates. As for the uncharged plates, in this
case a good agreement between HNC/MSA and MC results
is found for the three curves. We wish to highlight that the
main contribution to the plate–plate repulsive interaction (P)
is provided by a contact component (PC). Finally, it should be
mentioned that the force between the plates in the absence of
macroions shows a completely different behavior, i.e. P(τ ) is
always positive and monotonically decreasing as τ increases.
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Figure 6. Reduced concentration profiles (RCP) from HNC/MSA for
macroions (gM(x), solid line), anions (g−(x), dashed line) and
cations (g+(x), dotted line) for three different plate–plate separation
distances, i.e. τ = 12a, 8a and 6a. The black circles, white circles
and white diamonds are, respectively, RCP from the MC simulations
for macroions, anions and cations. The plates are positively charged
(σ = 0.033 C m−2) and are immersed in a solution containing
macroions (ρM = 0.05 M, zM = −5), their counterions and a 0.1 M
monovalent electrolyte.

Figure 6 shows the RCP from HNC/MSA and MC
simulations for macroions (gM(x)), anions (g−(x)) and
cations (g+(x)), and for three different plate–plate separation
distances, i.e. τ = 12a, 8a and 6a. As for the uncharged
plates, in general, the results from HNC/MSA theory show a
good agreement with those from MC simulations. It is seen that
the RCP at the outside of the plates remain nearly unchanged
for the different values of τ , i.e. the macroions and anions
are adsorbed towards the surface whereas cations are expelled
from it. Also, the RCP display damped oscillations as the
distance to the outside surface increases. These oscillations
of the outside RCP remain unaltered for the different values
of τ . Actually, the oscillations of the RCP for macroions and
anions are similar to those for σ = 0, but for this case the
macroion adsorption is enhanced due to the charge on the plate
surfaces. This implies that the transversal ordering induced by
the presence of the plates does not change its wavelength as
compared to that in the uncharged plates’ case. However, due
to the higher macroion adsorption, in the charged case, a higher
lateral macroion ordering is observed, owing to the less space
available. Thus, the confined macroions display higher lateral

Figure 7. Total force per unit area between the two plates (P) and its
contact (PC) and electrostatic (PE) components, as a function of their
separation distance, τ . The solid, dashed and dotted lines are,
respectively, the HNC/MSA results for P, PC and PE, whereas the
black circles, white circles and open diamonds (green online)
correspond to the MC simulation results. The plates are negatively
charged (σ = −0.033 C m−2) and are immersed in a solution
containing macroions (ρM = 0.05 M and zM = −5), their
counterions and a 0.1 M monovalent electrolyte. The solid light
curve (blue online) is the total interaction force when there are no
macroions but only a monovalent 0.1 M electrolyte for the same plate
surface charge density. The inset shows a close up for τ � 10a.

ordering than those at the outside surfaces since their local
concentration is higher inside than outside. Hence, as for the
uncharged plates, for τ = 12a, a nearly symmetric behavior of
the inside and outside RCP is seen as a function of the distance
to the plate surface. This symmetry is broken by the higher
contact value of the inside macroions’ RCP with respect to the
outside contact value. This gives rise to a plate–plate repulsive
effective interaction force. As discussed for the uncharged
plates’ case, as τ decreases slightly below τ = 2aM = 10a,
the macroions adsorbed at the inner surfaces strongly interact,
promoting their release (see figure 6 for τ = 8a). The
combination of macroion release and their desorption from
the pore surface produces an attractive plate–plate effective
interaction force. Finally, for τ → a+

M, i.e. when there is
space to nearly accommodate macroions in a single layer, there
is an increase of macroion concentration at the pore’s and at
the plates’ surface (see figure 6 for τ = 6a). This macroion
layer originates an abrupt increase of the plate–plate repulsive
interaction force as τ → a+

M.

3.3. Negatively charged plates

In this case, macroions and plates are like-charged and thus
they play the role of coions. The pressure on the plates (P) and
its components (PC and PE), for this case, are shown in figure 7
as a function of τ for (σ = −0.033 C m−2), ρM = 0.05 M and
zM = −5. In the same plot, the pressure when no macroions
are considered is included, i.e. by only accounting for the
monovalent electrolyte at ρM = 0.1 M. Mainly, the non-
monotonic behavior of P as a function of τ in the presence
of macroions is noted, showing several attractive regions. As
in positive and uncharged plates, this oscillatory behavior is
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long ranged, only disappearing for τ > 20a (see the inset
of figure 7). This is completely different from the monotonic
behavior of P obtained for pure electrolyte. This is surprising
at first sight, since naively one would expect coions to have
a small influence on the surface interaction. For this case,
however, macroions adopt interesting configurations between
the plates that give rise to the non-monotonic behavior of P . It
is interesting to note that both the electrostatic PE and contact
PC components contribute with the same sign to P , for all τ . In
particular both curves are practically overlapping for τ � 3a,
and below this point the contact component dominates. The
small discontinuity of P and PC for τ = aM should be noted,
owing to the presence and absence of macroions between the
plates.

The behavior of P can be explained in terms of the RCP
of the different species at different separation distances, τ .
These are shown for τ = 15a, 10a and 8a in figure 8.
There, contrary to the results for positive and uncharged plates,
it is shown that macroions are not directly adsorbed by the
plate surfaces. That is, the value for the macroions’ RCP
at contact is close to zero for all cases. However, there is
an adsorption of macroions at a second layer mediated by
the adsorbed cations. A maximum of the macroions’ RCP
for large plate–plate separation distances is seen, i.e. at a
distance of approximately 7a from the inner and outer surfaces
(x ≈ ±6(a/2) and x ≈ ±26(a/2), for τ = 15a). This
adsorption of macroions on a like-charged surface is probably
related to the observed halos of charged nanoparticles around
microparticles reported by Tohver et al [36]. In their work,
they studied a suspension of nearly uncharged microparticles
plus like-charged nanoparticles. Hence, it is interesting to note
that our results for uncharged or charged plates immersed in
a like-charged macroion solution both predict a plate–plate
stabilization mechanism. As the two plates approach, the two
maxima of the RCP for macroions inside the pore, at both sizes
of the plane of symmetry at x = 0, collapse into a single one
at x = 0 from about τ = 2aM. This implies the formation of a
single layer of macroions at the plates’ middle plane, which
increase their local concentration at x = 0 (hence increase
their lateral ordering and decrease their mutual repulsion) as
τ → a+

M. This mechanism is different to that for positive and
uncharged plates, where a layer is adsorbed on each surface
and a single layer is obtained only as τ → aM. In this case,
the most adsorbed species are the small cations. Thus, their
adsorption, influenced by the presence of macroions, mostly
explains the behavior of the plate–plate entropic (contact)
pressure. The case of τ = 15a corresponds to the situation
where P is slightly positive, caused by a higher adsorption of
cations inside the pore than outside. For τ = 10a, P and its
components PE and PC are nearly zero, implying a balance
between the inner and outer fluids. For the case τ = 8a,
there is a larger adsorption of cations inside the plates, thus
explaining the positive P value found at this distance. The
negative values of P for 3aM < τ < 9aM has to do with the
release of macroions from the inside of the plates which are
surrounded by their neutralizing cations. However, the release
of cations from the inside continues for τ < aM since some
of them remained between the plates, overcompensating the

Figure 8. Reduced concentration profiles (RCP) from HNC/MSA for
macroions (gM(x), solid line), anions (g−(x), dashed line) and
cations (g+(x), dotted line) for three different plate–plate separation
distances, i.e. τ = 15a, 10a and 8a. The black circles, white circles
and white diamonds are, respectively, RCP from the MC simulations
for macroions, anions and cations. The plates are negatively charged
(σ = −0.033 C m−2) and are immersed in a solution containing
macroions (ρM = 0.05 M, zM = −5), their counterions and a 0.1 M
monovalent electrolyte.

inner surface charge density. By decreasing τ below 3a the
higher confinement prompts a higher cation adsorption onto the
plates’ inner surface, hence giving rise to a higher contribution
from the inside fluid on PC, turning P positive. In short, the
interaction force between the plates for the case in which the
plates and macroions are like-charged can be understood in
terms of the adsorption of macroion–small ion complexes onto
the plates’ surfaces.

3.4. Induced charge densities

Figure 9 shows the HNC/MSA and MC simulation results
for the excess charge density between the plates, defined as
σ + σ in, as a function of τ for uncharged (σ = 0), positive
(σ = 0.033 C m−2) and negative (σ = −0.033 C m−2)
plates, immersed in a macroion solution (ρM = 0.05 M, zM =
−5). It should be pointed out that the overall electroneutrality
condition is always satisfied, that is, the plates’ charge density
is compensated by an induced charge density inside (σ in) and
outside (σ out) the plates, so that σ in + σ out = −2σ . The fact
that σ + σ in goes to zero as τ → ∞ implies that the local
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Figure 9. Excess charge density between the plates, σ + σ in, as a
function of their separation distance, τ . The plates are immersed in a
solution containing macroions (ρM = 0.05 M, zM = −5), their
counterions and a 0.1 M monovalent electrolyte. The three different
curves correspond to the HNC/MSA results for σ = 0 (solid line),
σ = 0.033 C m−2 (dashed line) and σ = −0.033 C m−2 (dotted
line), whereas the black circles, white circles and white diamonds
are, respectively, the results from MC simulations. The inset shows a
close up for τ � 10a.

electroneutrality condition is satisfied for large plate–plate
separation distances, i.e. the induced charge density at each
side of the plate compensates the charge of its corresponding
surface. On the other hand, for τ < aM = 5a, σ in + σ > 0 for
σ = 0 and for 0.033 C m−2, owing to the excess of macroions
adsorbed at the outside of the plates. For σ = −0.033 C m−2,
σ in + σ is positive for 3a � τ < 5a, since macroions are
expelled from inside the plates. For the three cases shown here,
as τ increases above aM = 5a, σ in + σ displays a damped
oscillatory behavior between positive and negative values,
being of higher intensity for the positive plates, followed
by the uncharged ones and of less intensity for the negative
plates. The negative intervals of σ in + σ correspond to an
overcompensation of σ in by the adsorbed macroions, whereas
the positive ones have to do with their expulsion from the
inside. We see that, in all cases, the most dramatic reduction
of macroion adsorption occurs as τ → (aM)+, i.e. when there
is just enough room to accommodate a single macroion layer
between the plates. It is interesting to note that negative values
of σ in + σ , within 6a � τ � 10a for σ = −0.033 C m−2,
are due to the increase of macroion concentration at the plates’
middle plane (see the maximum in their RCP at x = 0 in
figure 8). The adsorption of macroions between the plates is a
consequence of the need of the system for releasing space, i.e.
for increasing entropy, which is maximized when macroions
are adsorbed inside or outside the plates. According to this
principle, the adsorption of macroions is favored over the
small ions since they release more space. Hence, the intervals
of negative charge are produced when more macroions are
adsorbed than the necessary small ions to compensate their
charge, reflecting the prevalence of the space optimization over
the neutrality condition.

4. Conclusions

The effective interaction force between two parallel plates
immersed in a macroions plus electrolyte solution was studied
by means of an integral equation theory and Monte Carlo
simulations. In all cases, i.e. when the plates were uncharged,
and when the macroions and the plates were like-charged
and oppositely charged, an oscillatory behavior of the force,
between attraction and repulsion, was found. Hence the
presence of macroions originates several plate–plate distances
of mechanical equilibrium. In particular, we wish to highlight
that, when the plates are uncharged or like-charged to the
macroions, this mechanical equilibrium is associated with the
adsorption of macroions onto the plates’ surface. We believe
this mechanism is related to the observed colloid stabilization
mechanisms induced by the formation of nanoparticle halos
around microparticles [36]. Also, a long range oscillatory
behavior of the induced charge density between the plates is
observed, implying an overcompensation/undercompensation
of the plates’ charge density and a correlation between the
confined and outside fluids. In addition, our MC results
show a transversal ordering of the adsorbed macroions. Both
oscillatory behaviors can be explained in terms of the energy–
entropy balance, where the electrostatic and hard-sphere
repulsive forces are in competition with the effective attractive
force, due to the need of the system to optimize the available
space, i.e. of increasing entropy.

To the best of our knowledge, this paper exhibits the
first comparison between HNC/MSA theory and simulations
for an electrical double-layer system with macroions at finite
concentration. In general, a quantitatively good agreement is
found between them, pointing out that the HNC/MSA theory
properly captures electrostatic and short range correlations of
all species.
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Appendix A. The mean spherical closure

The primitive model is the simplest model for an electrolyte
that includes some of the most relevant aspects of real
solutions. In the general case the primitive model is constituted
by n species of particles embedded in a uniform medium of
dielectric constant ε at temperature T . Each species is defined
by the particles’ point charge at the center, qi = zi e (where e
stands for the proton’s charge and zi for the ionic valence), the
ionic diameter, ai , and number concentration, ρi . The fluid is
constrained to the following condition:

n∑

i=1

ziρi = 0. (A.1)

The expressions for the direct correlation functions,
ci j(r13), for a bulk electrolyte (required in equation (6)) were

10



J. Phys.: Condens. Matter 21 (2009) 424107 F Jiménez-Ángeles et al

obtained by Blum [54] and Hiroike [55], through the MS
closure, and are written as

ci j(r13) = e2β

ε
di j(r13) + chs

i j (r13) − β
zi z j e2

εr13
, (A.2)

with csr
i j(r13) = e2β

ε
di j(r13), β = 1/kBT and

di j(r13) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

b(1)

i j + zi z j

r13
, for 0 � r13 � λi j ,

b(2)

i j + zi z j

r13
− b(3)

i j + b(4)
i j r13 + b(5)

i j r 3
13,

for λi j < r13 � ai j ,

0, for r13 > ai j;

(A.3)

with λi j ≡ |ai −a j |
2 and ai j ≡ ai +a j

2 . The constants in
equation (A.3) are given by

si = (ni + �xi ),

b(1)
i j = 2

[
zi n j − xi si + ai

3
s2

i

]
,

b(2)

i j = (ai − a j)

{
(xi + x j)

4
[si − s j ]

− (ai − a j)

16
[(ni + �xi + n j + �x j)

2 − 4ni n j ]
}
,

b(3)
i j = (xi − x j)(ni − n j )

+ (x2
i + x2

j )� + (ai + a j)ni n j − 1
3 [ai s

2
i + a j s

2
j ],

b(4)
i j = xi

ai
si + x j

a j
s j + ni n j − 1

2
[s2

i + s2
j ],

b(5)
i j = s j

6a2
j

+ si

6a2
i

,

where xi are defined as xi ≡ zi + ni ai and � is obtained from
the solution of the following algebraic equation:

�2 = πe2β

ε

n∑

i=1

ρi (zi + ni ai)
2. (A.4)

The ni are obtained from the solution of the following set of
algebraic equations:

− (zi + ni ai)� = ni + cai

n∑

j=1

(zi + n j ai), (A.5)

where c = π
2 [1 − π

6

∑n
j=1 ρi a3

i ]−1.
Considering that a = a1 = a2, chs

i j (r13) is just the direct
correlation function for a hard-sphere binary mixture in the PY
approximation. For particles of the same size it is given by [56]

chs
ii (r13) =

{
−Ai − Bir13 − δr 3

13 for r13 < ai ,

0, for r13 > ai
(A.6)

For particles of different sizes we have

chs
13(r13) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

−A1 for s � λ13,

−A1 − [αx2 + 4λ13δx3 + δx4]
r13

for λ13 < r13 � a13,

0 for r13 > a13

(A.7)

with x ≡ r13 − λ13. The constants used in equations (A.6)
and (A.7) are given by

A1 = (1 − ηT )−3

{
1 + ηT + η2

T + π

6
a3ρT [1 + 2ηT ]

− π

2
ρ3(a3 − a)2{a(1 + η3) + a3[1 + 2(η1 + η2)]}

}

+ πa3

2
(1 − ηT )−4

{
ρT (1 + ηT + η2

T )

− π

2
ρ3(ρ1 + ρ2)(a3 − a)2

[
(a + a3)

+ aa3
π

6

3∑

i=1

ρi a
2
i

]}
, (A.8)

α = −πa13g13(a13)

3∑

i=1

ρi ai gii (ai), (A.9)

δ = π

12

3∑

i=1

ρi Ai , (A.10)

B1 = B2 = −π[(ρ1 + ρ2)a
2g2

11(a) + ρ3a3g2
13(a13)], (A.11)

with

g11(a) = g22(a) = {[1 + 1
2ηT ] + 3

2η3a3
3(a − a3)}(1 − ηT )−2,

g13(a13) = [a3g11(a) + ag33(a3)]
2a13

.

(A.12)
The expressions for A3, B3 and g33(a3) are obtained by
interchanging η1 + η2, ρ1 + ρ2 and a1 with η3, ρ3 and a3,
respectively, in the expressions for A1 B1, g11(a).

Appendix B. The kernel expressions

Carrying out the integrations indicated in equations (18)
and (19), using equations (A.3), (A.6) and (A.7), the
expressions for Ki j (x, y) and Di j(x, y) are

Di j(x, y) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

b(1)
i j k0 + zi z j J1 + b(2)

i j M1 − b(3)
i j M2

+ b(4)
i j M3 + b(5)

i j M5,

for 0 � |x − y| � λi j ,

(b(2)
i j + zi z j)J1 − b(3)

i j J2 + b(4)
i j J3

+ b(5)
i j J5, for λi j < |x − y| � ai j ,

0, for ai j < |x − y|

(B.1)

−Kii (x, y) =
{

Ai J2 + Bi J3 + δ J5, for aii � |x − y|,
0, for aii < |x − y|,

(B.2)

−K13(x, y) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

A1 J2 + αa3/3 + δλ13a4 + δa5/5,

for |x − y| < λ13,

A1 J2 + υ P3 + 4δλ13 P4 + δP5,

for λ13 < |x − y| � a13,

0, for a13 < |x − y|,

(B.3)

where we use the following definitions:

Jn = (an
i j − |x − y|n)/n, (B.4)
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Pn = (an − (|x − y| − λi j )
n)/n, (B.5)

Mn = (an
i j − λn

i j)/n, (B.6)

and
k0 = (λ2

i j − (x − y)2)/2. (B.7)
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[5] Rädler J O, Koltover I, Salditt T and Safinya C R 1997 Science

275 810
[6] Verwey E J and Overbeek J T G 1948 Theory of the Stability of

Lyophobic Colloids (Amsterdam: Elsevier)
[7] Derjaguin B V and Landau L 1941 Acta Physicochim. (USSR)

14 633
[8] Lozada-Cassou M 1981 J. Chem. Phys. 75 1412
[9] Lozada-Cassou M, Saavedra-Barrera R and Henderson D 1982

J. Chem. Phys. 77 5150
[10] Kjellander R 1988 J. Chem. Phys. 88 7129
[11] Mier y Teran L, Suh S H, White H S and Davis H T 1990

J. Chem. Phys. 92 5087
[12] Patra C N and Ghosh S K 1994 J. Chem. Phys. 100 5219
[13] Yu Y-X, Wu J and Gao G-H 2004 J. Chem. Phys. 120 7223
[14] Torrie G M and Valleau J P 1980 J. Chem. Phys. 73 5807
[15] Caillol J M and Levesque D 1991 J. Chem. Phys. 94 597
[16] Lozada-Cassou M 1984 J. Chem. Phys. 80 3344
[17] Lozada-Cassou M and Dı́az-Herrera E 1990 J. Chem. Phys.

92 1194
[18] Lozada-Cassou M and Dı́az-Herrera E 1990 J. Chem. Phys.

93 1386
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[31] Jiménez-Ángeles F and Lozada-Cassou M 2004 J. Phys. Chem.

B 108 1719
[32] Terao T and Nakayama T 2002 Phys. Rev. E 65 021405
[33] Messina R 2009 J. Phys.: Condens. Matter 21 113102
[34] Decher G 1997 Science 277 1232
[35] Caruso F, Caruso R A and Möhwald H 1998 Science 282 1111
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